
NOTATION 

r, z, cylindrical coordinates; Ur, Uz, projections of the vapor velocity vector onto 
the coordinate axes; T, T~, temperatures in the vapor layer and in the liquid spheroid; H, a, 
coefficients of vapor viscosity and thermal conductivity; P, pressure within the vapor layer; 
V, velocity of the vapor at the boundary of phase separation; % and %~, coefficients of vapor 
and liquid thermal conductivity; T s, Tw, Tc, saturation temperatures for the liquid, the 
heated surface, and the ambient medium; Pc, pressure in the ambient medium; p, p~, density 
of the vapor and of the liquid; L, specific heat of vaporization; ~i, ~2, heat-transfer co- 
efficients at the upper and side surfaces of the spheroid; H, R, thickness and radius of 
the spheroid; h, thickness of the vapor layer; g, gravitational acceleration; J0, J1, Bessel 
functions of the first kind, of zeroth and first order; h,, AT, characteristic values of 
the vapor-layer thickness and the temperature difference; A, roughness magnitude of the 
heated surface; TL, TL', Leidenfrost temperature for the cases in which consideration is 
given to and not given to the exchange of heat between the liquid spheroid and the ambient 
medium. Criteria: Bi I = ~IR/X~; Bi 2 = ~2R/X~. 
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THE SPREADING OF A MICROSTRUCTURAL FLUID OVER A SOLID SURFACE 

N. P. Migun and A. C. Eringen UDC 532.5.013 

The kinetics involved in the spreading of a drop of microstructural fluid over 
a horizontal solid surface is investigated theoretically. A method is pro- 
posed for the measurement of material constants of the fluid, characterizing 
its micropolarity. 

i. Specialists in the field of hydrodynamics and physical chemistry have recently paid 
particular attention to problems of fluid spreading and displacement of the contact line 
between fluid i, fluid 2, and a solid surface [i-9]. Considerable progress has been achieved 
at this time in this area, but at the same time all of the attempts theoretically to analyze 
the problems of spreading encounter two fundamental difficulties. 

The first difficulty involves the shifting of the contact line, since the Navier-Stokes 
equations for the boundary conditions of adhesion lead to an impermissible singularity in 
the force on this line [i, 2]. There exists a means of eliminating this singularity of force 
by means of utilizing the condition of slippage or shear in the region of the contact line, 
e.g., the Maxwell condition at which the magnitude of the shear is proportional to the local 
velocity gradient [3, 4]. 
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The second difficulty encountered in theoretical analysis of drop spreading is associ- 
ated with the problem of the contact wetting angle. It is obvious that the contact angle 
depends on time. For example, a fairly common approach is one in which this relationship 
is associated with the angle formed by the tangent to the drop surface not at the contact 
line, but at some distance from it [4]. However, the real contact wetting angle on the con- 
tact line itself is assumed to be constant. 

There now exist a number of solutions for the problem of drop Spreading over a horizon- 
tal surface, but the procedure involved in obtaining the majority of these solutions is rather 
complex. For example, in utilizing the shear condition we introduce the parameter of charac- 
teristic length which is a measure of the extent of the region near the contact line, within 
which this shear occurs. The problem is then formulated for two or three regions and by 
means of the "matching" procedure for asymptotic expansions we derive an equation for the 
velocity of drop spreading as a function of the wetted-surface radius. The equation is solved 
numerically. 

As far as we know, the first quantitative description of the kinetics of quasisteady 
spreading of a drop of Newtonian fluid over a horizontal solid surface, based on a comparison 
of the free surface energy and the work required to overcome viscous friction, was presented 
in the article [7]. The problem of the spreading of a drop of Newtonian fluid in the case 
of very good wetting (when the contact angle 0 § 0) for a quasisteady process was solved 
through the use of a series of assumptions relative to the Navier-Stokes and continuity equa- 
tions by the authors of [8]. A relationship was derived between time and the radius of the 
circle formed by a wetted drop of Newtonian fluid over a solid surface, and this relationship 
proved to be in good agreement with experimental data for a number of fluids. The approach 
to the solution of the spreading problem as described in [8] becomes attractive because of 
its simplicity. With this approach it is possible to avoid the two-dimensionality of the 
problem and the difficulties associated with the formulation of the boundary conditions. 
As regards the problem of the contact angle, it is appropriate to assume (as is done, for 
example, in [4]) that the magnitude of the contact wetting angle in the vicinity of the 
contact line is independent of time. Let us note that it is precisely this contact angle 
that characterizes the dynamic spreading coefficient [i0]. 

Below we examine the spreading of a microstructure fluid over a horizontal solid surface 
in the case of wetting, very nearly total, as e + 0. Fluids whose volume microelements may 
also exhibit, in addition to translational velocity v, intrinsic angular velocity v, differ- 
ing from a vortex w = (1/2) • rotv, are referred to as microstructural fluids. These in- 
clude, for example, magnetorheological, electrorheological, and certain other types of sus- 
pensions and liquid crystals, blood, associated fluids (for example, water). The condi- 
tion under which the field of intrinsic rotations v~w arises is comparability of character- 
istic flow dimension (for example, the thickness of the layer or of the capillary radius) 
and the average dimension of the fluid's microelement. 

In this connection it should be noted that when a drop of a microstructural fluid spreads 
out over a horizontal solid surface in the case of cos 8 ~ 1 the fluid spreads out in a very 
thin layer whose thickness rapidly diminishes with time. This means that, beginning from 
a particular drop radius, the intrinsic rotations of the fluid's microelements begin, with 
the passage of time, to exert an increasing influence on the nature of the spreading. 

2. Formulation and Solution of the Problem. Let us examine the spreading of a drop 
of microstructural fluid of mass m over a horizontal solid surface with nearly total wetting 
as cos 8 + i. For a description of the process we will employ the theory of micropolar fluids 
[ii] within whose scope allowance is made not only for translational but intrinsic rotational 
velocities of the microelements of the medium's volume. The differential equations for the 
velocity v and microrotation v of the micropolar fluid are written as follows in general 
form [ii]: 

8p +V. (pv)=O, 
Ot 

(~--~- 2~.-{- ~) VV-V-- ( ~ +  ~)V • V • v + xv  X v - - V ~ ~  + pf = [o, ] 
= P  ' at v •  

(~v + ~v + ~)VV " v -  ~V • V ~ ~ '+xV • v ~  2• + pl = ply. (i) 
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We will make the following assumptions: i) we will examine thequasisteady process of 
spreading in which we can neglect the local derivative of velocity with respect to time in 
comparison with the viscous term; 2) the inertial effects are negligibly small; 3) the fluid 
is incompressible; 4) we will neglect the evaporation of the fluid layer during the time 
of the spreading, i.e., we will assume m = const. 

Let us write the system of equations (i) for the enumerated assumptions in a cylindrical 
system of coordinates whose z axis is perpendicular to the solid surface and coincides with 
the axis of symmetry for the drop: 

(~ + ~) d~v, d% @ 
x - -  + p[, = O, 

dz ~ dz dr 

? d'v~ -F•  dr,  2• = O, 
dz 'z dz 

(2)  

where v r and w~ are the nonzero components of the vectors v and v; dp/dr is the pressure 
gradient in the fluid layer. We will regard the spreading as a consequence solely of a re- 
duction in the free surface energy. In accordance with the approach described in [8], the 
external force fr acting on the system can be expressed as 

1 a (a~/) 
[ r  ~ m Or 

where AW is the change in the free surface energy of the solid wetted by a fluid layer of 
mass m, and this change can be expressed in terms of the specific free surface energies at 
the boundary between the solid and the ambient medium Osg and with the fluid asf as 

A ~  = K ( ~  ~ - -  %~ ~r ~, 

where K is the surface roughness coefficient [12]. Hence 

f , =  2~rK(ds_g--&~) . (3)  

The pressure gradient in this case is defined in terms of the surface tension Ofg which 
can be presented as the force acting per unit length of the contact line: 

Op 2~ra~4 # 
or = m~ (4) 

Considering the fact that K(os~ - Osf) - Ofg= S, where S is the spreading coefficient [12], 
and having substituted (3) and (4) ~nto (2), we obtain 

(~ + x) d~v" d~,,~ 2~rpS 
--• - +  . . . .  O, 

dz ~ ~k m 

dv,~ (5) 
d2~'~ -- -- 2• = 0. 

~ +• dz 

This system of equations describes the spreading of a drop of micropolar fluid over a hori- 
zontal solid surface. 

The boundary conditions for velocity and microrotation can be formulated in the following 
manner. On a nonmoving solid surface we will assume the condition of adhesion for v and 
a boundary condition of the general type for v [13]: 

Consequently: 

O~ 

Vlb= y(V • v) Ib. 

v, lz.=o = O, v~]~~ = -2- ~ dz ] ~=o" (6) 

The dynamic boundary conditions that must be satisfied at the free surface include ab- 
sence of stresses t and couple stresses m: t =m=O on the free surface. 

175 



Since for a micropolar fluid [Ii] tks = ( - ~ ~  + IVr,r)6ks + p(v~, Z + vs k) + ~(vs k - 
eks , mks = ~vVr,r6kZ + SvVk,s + yVs we can write the following boundary conditions 
on the free surface: 

~, az ;I,~ • ~ =0. (7) 

Solution of the system of differential equations (5) for boundary conditions (6) and 
(7) leads to the following expressions for the nonzero components of velocity and micro- 
rotation: 

v~= ~t----~[-~--Rh [(bsh~h q_ _~_h ) chkZ--lchkh 

' 2h ' 

Rh [ (  b s h k h  + 1 ) shkz b ch~z__ z____z..__{_+], 

( 8 )  

where 

b = •162 k = , [~ = •  R = - -  

2 ~ r  ~ ( i  --~)' 1~+ ~ ' m ( 9 )  

Since in the case of a moving fluid front z = h, using (8) and (9), as well as the con- 
dition of mass constancy m = zr=ph, it is easy to derive a formula for the spreading rate 

dr a { 1 +  ~[ch(p/r2)--l]:--2(P/~2)bsh:(P/r2) } 
v~ = d--7-- = r~ (plr~? ch (plrD ' (10) 

where p = m~/zp, a = mS/(BN~p). 

When ~ = 0, formula (i0) changes into an expression for the velocity of a Newtonian 
fluid [8] 

N 
Vr = dr~dr = a/r 3. ( i i )  

By integrating this equation we can calculate the time t N needed for the front of the New- 
tonian fluid to cover the distance from r I to r2: 

t N r 4 = ( 2 - -  r~)14a. (12) 

An analogous formula for a micropolar fluid follows from Eq. (i0): 

I "  2 

, 4 r~ ~ c h ~  - -  1)/~ 2bsh r o + I~ (ch ~ - -  
(13) 

where $ : p/r 2. 

The ratios vrmP/vr N and tmP/t N characterize the difference in the values of velocities 
and times calculated both with and without consideration of the fluid's micropolarity. 

3. The Method of Determining the Material Constants of a Micropolar Fluid and the 
Parameters of the Boundary Conditions. Using formulas (i0) and (13), we can quantitatively 
describe the kinetics for the spreading of a drop of microstructural fluid over a horizontal 
solid surface. However, for this we must know the magnitudes of the parameters ~, • and 
~. The following method is proposed for the determination of these quantities. 

Let us assume that we have used slow-motion photography to measure the spreading velo- 
cities Vrl and Vr2, corresponding to two values of the wetted-surface radius r I and r=. Us- 

ing formula (i0), we can express Vrl and Vra in terms of ~, ~, and ~ for both radii. A meth- 

od has been developed in [14] to determine the parameters ~ and e = x(l - ~). This method 
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Was applied, for example, to calculate the microstructural parameters of certain tracer 
fluids used in capillary defectoscopy [14]. Consequently, we can find the quantity p 
which is contained in the expressions for Vr~ and Vri. The quantity a which contains the 

spreading coefficient is determined experimentally: we will calculate this quantity by us- 
ing the experimental data for the spreading velocity at the beginning of the process when 

e i0 and when formula (ii) is valid. Thus, the expressions for Vr~ and Vr= represent a 

system of algebraic equations for two unknowns: ~ and b, which when transformed into an 
equation for 6, yields: 

~ sh ~ [a~ ch ~a -t- a[~ (ch ~ - -  1) - -  Q~] = ~ sh ~ [a~  ch ~ -t- a[$ (oh B~ - -  1) - -  Q,], (14) 

where 
2 3 ~ O  2 3 Q1 = vr,~l ch~lrl, Q~ r,~2ch~2r~, ~1 =p/r~, ~ =p/r~. 

From (14) we obtain the expression 

l ~t sh ~ (a~ ch ~,,. - -  Q2) - -  (a~ ch ~ - -  Q~) ~2 sh ~2 
[~ a ~ish~(ch~1-- l)-- (ch~-- l)~lsh~ 1 (15) 

Having determined 6, with the aid of (i0) we find the second parameter: 

b ----- a ~ c h ~  -i-, a[~(Ch~l-- 1)--Q~ (16)  
2~1 sh ~ 

Now, bearing in mind that 2~ N = 2~ + • and using (15), we obtain the formulas for the 
material constants • and ~: 

2FN~ 2~] --~;) (17) 
2-~ 2-~ 

Since 
• --=) 

b = - ~ ? ,  + • - ~ )  ' 

it is not difficult to write an expression for the calculation of the boundary-condition 
parameter ~ in which the quantities b, • and U are found from formulas (16) and (17): 

2 ( ~ + ~ ) b - - •  
= (18) 

•  1) 

4. The Effect of Fluid Micropolarity on the Kinetics of Fluid Spreading Over a Solid 
Surface. The effect of the intrinsic rotations of the microelements in the volume of a micro- 
structural fluid (or its micropolarity) on the velocity of drop spreading over a solid sur- 
face can be described quantitatively by means of three dimensionless microstructural param- 
eters: 6, b, and $. The latter can be expressed in terms of the characteristic flow dimen- 
sion, i.e., in this particular case, in terms of the thickness h of the spreading drop. If 
we take into consideration that $ = p/r 2, while the mass of the drop m = vriph, we can write 

as follows: 

Consequently, the parameter ~ is characterized both by the physical properties of the 
material and by the characteristic dimension of the flow. It is obvious that the greater 
the average dimension of the fluid's microelements and the smaller the thickness of the 
spreading layer, the more markedly will the micropolarity affect the kinetics of the pro- 
cess. The parameter ~ is defined exclusively by the material constants of the fluid, where- 
as the parameter b is determined both from the material constants and the nature of the boun- 
dary conditions for the microrotations. 

Numerical analysis of formulas (i0) and (13) demonstrates that when ~ ~ i0 even in the 
case of • m ~N i.e., when the rotational viscosity is very much greater than the shear 
viscosity, the difference between vrmP and vrN as well as tmP and t N does not exceed 2-3%. 
Consequently, if we know the quantity ~ of the fluid, we can estimate the magnitude of the 
layer thickness hm, below which the micropolarity of the fluid influences the kinetics of 
fluid spreading. 
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The greater the polarity of the associated fluid, the smaller the parameter ~, and in 
the case of water, a more polar fluid, ~ = 7.107 m -I [14]. Consequently, when h > h m = 
1.5.10 -7 m the micropolarity of the associated fluids exerts virtually no effect on the ve- 
locity of spreading. In actual practice, such a layer thickness as a consequence of its 
evaporation during the spreading process even in the case of nearly total wetting is rarely 
achieved. Hence follows the conclusion that there is no merit in taking into account the 
micropolarity of associated fluids in the theoretical description of their spreading over 
a solid surface. Physically this is explained by the smallness of the dimensions d of the 
microelements exhibiting intrinsic rotations. For associated fluids the dimensions of such 
microelements (associates) are d = (1-3).10 -9 m. However, numerous suspensions contain par- 
ticles whose dimensions are larger by several orders of magnitude. 

Let us assume that the quantity hm/d for various fluids is constant. Since for water 
hm/d = 70, from the condition of negligibility of the micropolarity of the fluid for 
spreading in a layer with h > hm, where h m = i0/~, there follows the relationship between 
the magnitudes of the microstructural parameter ~ and the average dimension d of the sus- 
pension particles: 

fi~ (7d)-L (20) 

For example, let us examine suspensions with average particle dimensions of d I = 3.10 -6 
m and d 2 = 2.10 -s m. It follows from (20) that for the first suspension ~i = 5"104 m-l, 
while for the second suspension ~2 = 7"10s m-l It is also easy to demonstrate that hml = 
2.10 -4 m and hm2 = 1.4.10 -3 m. This indicates, for example, that for a suspension with par- 

ticles of diameter d 2 = 2.10 -s m the velocity of spreading diminishes in comparison with 
that calculated for a Newtonian fluid even at a layer thickness of h < 1.4'10 -3 m. 

Let a drop of a suspension applied to a horizontal solid surface have a diameter 2.10 -3 
m and a density i03 kg.m -~ Then m ~ 3.35.10 -s kg, and the parameter p for both of the sus- 
pensions under consideration assumes values of Pl = 5.3'i0-4 m2 and P2 = 7.5"i0-5 m2. 

The layers of the drops from both of the suspensions with a diameter of 2.10 -3 m at a 
distance r > 5"10 -3 m from the center of the wetted circle exhibit a thickness h < 5'10 -4 
m. This means that for more highly dispersed suspensions even at such a distance from the 
center of the circle the influence of the micropolarity of the medium is significant inso- 
far as it pertains to the spreading velocity and it must be taken into consideration in the 
corresponding calculations. 

Let us use formulas (I0), (ii), and (13) to calculate the ratios vrmP/vr N and tmP/t N 
for the micropolar fluids with various values of the material constants. 

For small values of the parameter $ formulas (i0) and (13) are significantly simplified; 
for the case in which $ § 0 

v~---~P ~ - -2b ,  ---~ I-}-----20 (21) 
v~ -+IH--~ tN 2 

It is obvious that not every combination of the quantities ~, • and ~, in terms of which 
the parameters p and b contained in formulas (i0) and (13) are expressed, will satisfy physi- 
cal reality. In selecting the physically permissible combinations we will proceed primarily 
from the fact that the calculation of the spreading velocity with consideration of addition- 
al (rotational) degrees of freedom must lead to values of the spreading velocities that are 
smaller in comparison with those found from formula (ii) for the Newtonian fluid. The 
spreading of the Newtonian fluid is characterized by a distribution of energy (in the case 
under consideration it is determined by a reduction in the free surface energy) only over 
the degrees of freedom for the translational motion of the microelements of the medium's 
volume and this energy is expended on overnoming the shear friction. In the case of a micro- 
structural fluid a portion of the energy is expended also on overcoming rotational interac- 
tions, i.e., the overall reduction in free surface energy is distributed over the degrees 
of freedom not only of translational but also rotational motion. As a result vrmP/vr N < i 
and tmP/t N > I. 

Let us examine two suspensions with given parameters ~ and ~2- A reduction in ~ and 
an increase in • correspond to an increase in the intrinsic rotation of the fluid's micro- 
elements. The larger • the easier it is for the particles "to escape" over the boundary 
surface, i.e., the closer the permissible value of ~ is to i. On the other hand, if for 

178 



o,a qa 

. . . . . .  5 e,~ 

. L --" ~ . . . .  ~ | 

~o2 o,o~ r o, o2 o,o~ P 

Fig. 1 Fig. 2 

Fig. i. The ratio vrmP/vr N as a function of the radius r of the 
wetted surface circle at ~ = 5"10 ~ m-Z: i, 2, 4) ~ = 0.4; 3, 5, 
6) 0; i, 3) • = 0.5; 2, 5) i; 4, 6) 2. r, m. 

Fig. 2. The ratio vrmP/vr N as a function of the radius r of the 
spreading circle for suspensions with E = 5.104 m -I (i, 3) and 

= 7.103 m -z (2, 4) when ~ = 0.2, x/p N = 1 (i, 2), 2 (3, 4). 
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Fig. 3. The ratio tmP/t N as a function of r for ~ = 7.103 m -I 
and ~ = 0 for • = 2 (i), 1 (2), 0.8 (3), 0.5 (4), 0.2 (5). 

Fig. 4. The ratio tmp/t N as a function of the radius r of the 
spreading circle for two suspensions at ~/pN = 2 and for vari- 
ous boundary conditions: ~ = 0.2 (i, 2), 0.4 (3, 4); ~ = 7.103 
m -1 (i, 3), 5.104 m -I (2, 4). 

a known ~ we specify ~ close to i, it follows from the condition vrmP/vr N < i and (21) that 
such a situation is attainable only when • > 2p(2~ - i)/(i - ~). 

Following similar considerations, we can demonstrate that if the quantities ~ and • 
are given, the boundary-condition parameter ~ must fall within the range 0 < ~ < (2~ N + • 
(4u N + • 

Results of a numerical analysis* of formulas (10)-(13), characterizing the effect of 
fluid micropolarity on the kinetics of fluid spreading, are shown in Figs. 1-4. 

As we can see from Fig. i, the closer the boundary conditions are to the case of total 

adhesion, when v r = v~ = 0, and also the larger the values of • the greater the difference 
N between vrmP and v r 

Analysis of Fig. 2 shows that, beginning from some value for the spreading radius, for 
various values of ~ and the same values of • and ~, the quantity vrmP/vrN becomes constant. 
This is associated with the fact that the effect of microrotations is determined not only 
by the quantity ~, but by the ratio ~ = p/r 2, which can be presented in the form g = kh. 

*The authors express their gratitude to Dr. B. Altan for the numerical calculations. 
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Therefore, suspensions with various values of ~z and ~2 for corresponding spreading radii 
r I and r 2 have identical 6, in which case for small values of $ the relationship between 
vrmP/vr N and that quantity disappears, as follows from (21). It is obvious that the maxi- 
mum micropolarity of the fluid (Fig. 2) makes its appearance for a smaller value of 
[, the smaller value of the radius of the spreading spot. 

Figure 3 shows some results from an analysis carried out with the aid of formula (13) 
into the effect of fluid micropolarity on the time it takes for the drop spreading front 
to reach corresponding values for the wetted-spot radius. The curves have been plotted for 
the case of extremely pronounced influence from the boundary surface on the intrinsic rota- 
tions of the fluid particles (~ = 0) for various values of • We see, for example, that 
when • = 2~ N and ~ = 7.103 m -I, in this case even with a spot radius of r = 10 -2 m the dif- 
ference between tmP and t N reaches more than 60%. 

Figure 4 illustrates the kinetics of spreading for the suspensions that we are consider- 
ing here, for various values of the boundary-condition parameter. The difference between 
tmP and t N increases with a decrease in ~ and ~, and here, beginning with some value of r, 
it is independent of the radius for a variety of fluids. 

The results that we have obtained demonstrate that with comparable dimensions for the 
spreading-layer thickness and the particle diameters the intrinsic rotations of the latter 
may exert significant effect on the kinetics of drop spreading over a horizontal solid sur- 
face. The proposed method of measuring the characteristics of fluid micropolarity makes it 
possible quantitatively to evaluate this influence. 

NOTATION 

p, the fluid density; t, time; I, D, ~, 7, ~v, and ~v, material constants of the micro- 
polar fluid; f, mass force; I, body couple vector; j, microinertia; n ~ thermodynamic pres- 
sure; Vr, ~, nonzero components of the velocity and microrotation vectors; m, drop mass; 
r, radius of the circle formed on the wetted surface; ~, boundary-condition parameter for 
the microrotation vector; t and m, stress and couple-stress tensors; h, thickness of the 
spreading layer; d, dimension of the fluid microelement. 
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